Determinante 3x3 a11 a22 a33 + a12 a23 a31 + a13 a21 a32 - a13 a22 a31 - a12 a21 a33 - a11 a23 a32. Ecuación plano por tres puntos (x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2)) + (y+y(A_1)) (y(B_2)-y(A_2)) (x(C_1)-x(A_1)) + (z-y(A_2)) (x(B_1)-x(A_1)) (y(A_1)-y(C_1)) - (z-y(A_2)) (y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (y+y(A_1)) (x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1)) = 0 ---------------- z=0 (x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2))+ (-y(A_2)) (x(B_1)-x(A_1)) (y(A_1)-y(C_1)) - (-y(A_2)) (y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1)) = (y+y(A_1)) ((x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (y(B_2)-y(A_2)) (x(C_1)-x(A_1))) (((x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2))+ (-y(A_2)) (x(B_1)-x(A_1)) (y(A_1)-y(C_1)) - (-y(A_2)) (y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1)))/ ((x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (y(B_2)-y(A_2)) (x(C_1)-x(A_1)))) -y(A_1) = y f'_1(x)= (((x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2))+ (-y(A_2)) (x(B_1)-x(A_1)) (y(A_1)-y(C_1)) - (-y(A_2)) (y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1)))/ ((x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (y(B_2)-y(A_2)) (x(C_1)-x(A_1)))) -y(A_1) Cambiando los signos a y. f_1(x)= (((x-x(A_1)) (-y(A_1)+y(B_1)) (-y(C_2)+y(A_2))+ (y(A_2)) (x(B_1)-x(A_1)) (-y(A_1)+y(C_1)) - (y(A_2)) (-y(A_1)+y(B_1)) (x(C_1)-x(A_1)) - (x-x(A_1)) (-y(B_2)+y(A_2)) (-y(A_1)+y(C_1)))/ ((x(B_1)-x(A_1)) (-y(C_2)+y(A_2)) - (-y(B_2)+y(A_2)) (x(C_1)-x(A_1)))) +y(A_1) Con condicional para la "verntana" f_1(x)=Si[0 ≤ x ≤ 1.5floor(sqrt((97x(O) - x(O)² - 277) / 28) / 2)², (((x-x(A_1)) (-y(A_1)+y(B_1)) (-y(C_2)+y(A_2))+ (y(A_2)) (x(B_1)-x(A_1)) (-y(A_1)+y(C_1)) - (y(A_2)) (-y(A_1)+y(B_1)) (x(C_1)-x(A_1)) - (x-x(A_1)) (-y(B_2)+y(A_2)) (-y(A_1)+y(C_1)))/ ((x(B_1)-x(A_1)) (-y(C_2)+y(A_2)) - (-y(B_2)+y(A_2)) (x(C_1)-x(A_1)))) +y(A_1)] ------------------- y=0 (x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2)) + (y(A_1)) (y(B_2)-y(A_2)) (x(C_1)-x(A_1)) + (z-y(A_2)) (x(B_1)-x(A_1)) (y(A_1)-y(C_1)) - (z-y(A_2)) (y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (y(A_1)) (x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1)) = 0 (((x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2)) + (y(A_1)) (y(B_2)-y(A_2)) (x(C_1)-x(A_1)) - (y(A_1)) (x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1))) / ((y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (x(B_1)-x(A_1)) (y(A_1)-y(C_1)))) + y(A_2) = z cambiando z por y y=(((x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2)) + (y(A_1)) (y(B_2)-y(A_2)) (x(C_1)-x(A_1)) - (y(A_1)) (x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1))) / ((y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (x(B_1)-x(A_1)) (y(A_1)-y(C_1)))) + y(A_2) f_2(x)=(((x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2)) + (y(A_1)) (y(B_2)-y(A_2)) (x(C_1)-x(A_1)) - (y(A_1)) (x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1))) / ((y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (x(B_1)-x(A_1)) (y(A_1)-y(C_1)))) + y(A_2) Con condicional para la "verntana" f_2(x)=Si[0 ≤ x ≤ 1.5floor(sqrt((97x(O) - x(O)² - 277) / 28) / 2)², (((x-x(A_1)) (y(A_1)-y(B_1)) (y(C_2)-y(A_2)) + (y(A_1)) (y(B_2)-y(A_2)) (x(C_1)-x(A_1)) - (y(A_1)) (x(B_1)-x(A_1)) (y(C_2)-y(A_2)) - (x-x(A_1)) (y(B_2)-y(A_2)) (y(A_1)-y(C_1))) / ((y(A_1)-y(B_1)) (x(C_1)-x(A_1)) - (x(B_1)-x(A_1)) (y(A_1)-y(C_1)))) + y(A_2)]